This file has been cleaned of potential threats.

If you confirm that the file is coming from a trusted source, you can send the following SHA-256 hash value to your admin for the original file.

38a90e5e864c135e77155e89b50310bfced68a73af6e4fe95a6bc7bcbf572610

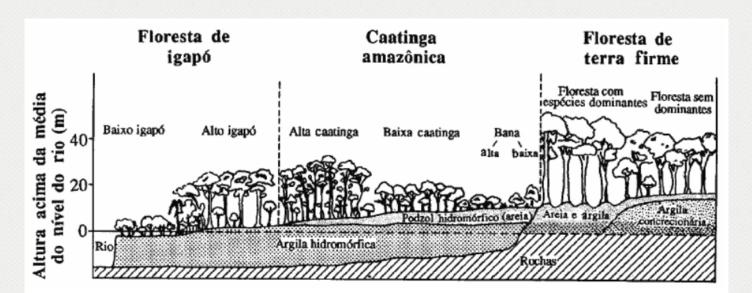
To view the reconstructed contents, please SCROLL DOWN to next page.

JST-JICA satreps provide the

CADAF PROJECT

Forest biomass distribution pattern in the upper Rio Negro Inferred from floristic composition and topography

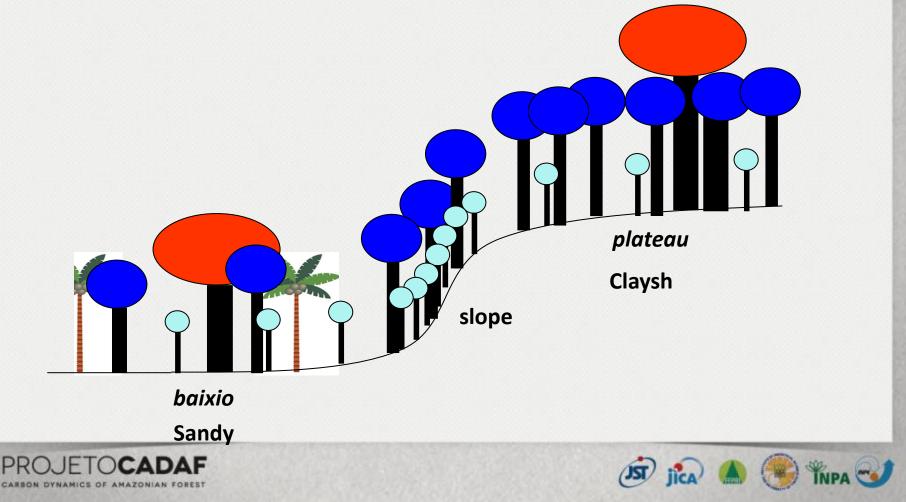
Suwa Rempei (FFPRI, Japan)



Backgrounds: Forest types

DYNAMICS OF AMAZONIAN

In the upper Rio Negro regions, the tropical forests established on infertile eluvial soils, and various forest types, including white sand (*campinarana*) and *terra-firme* forests are observed.


frm Clark and Uhl 1987

Backgrounds: Topography

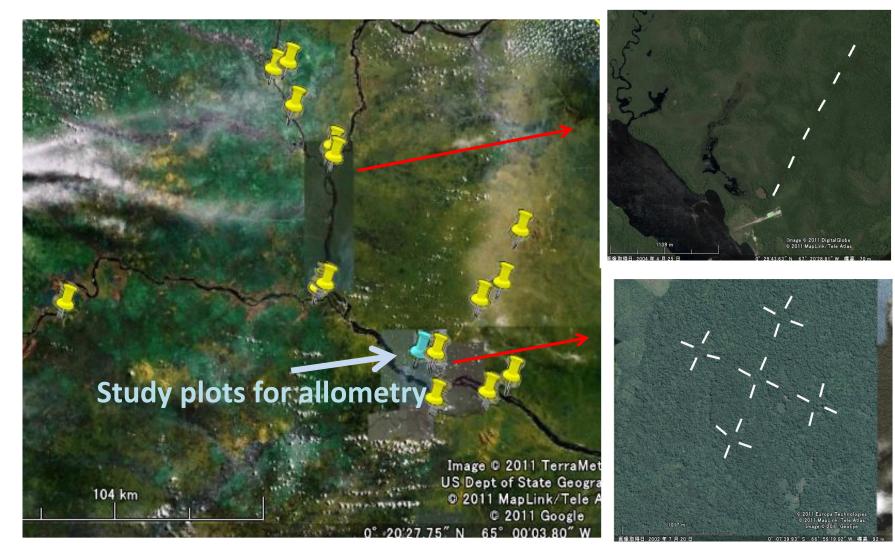
Even within a same forest type, biomass varies along a soil gradient depending on topography (Laurance et al. 1999; Castilho et al. 2006; Suwa et al. 2012)

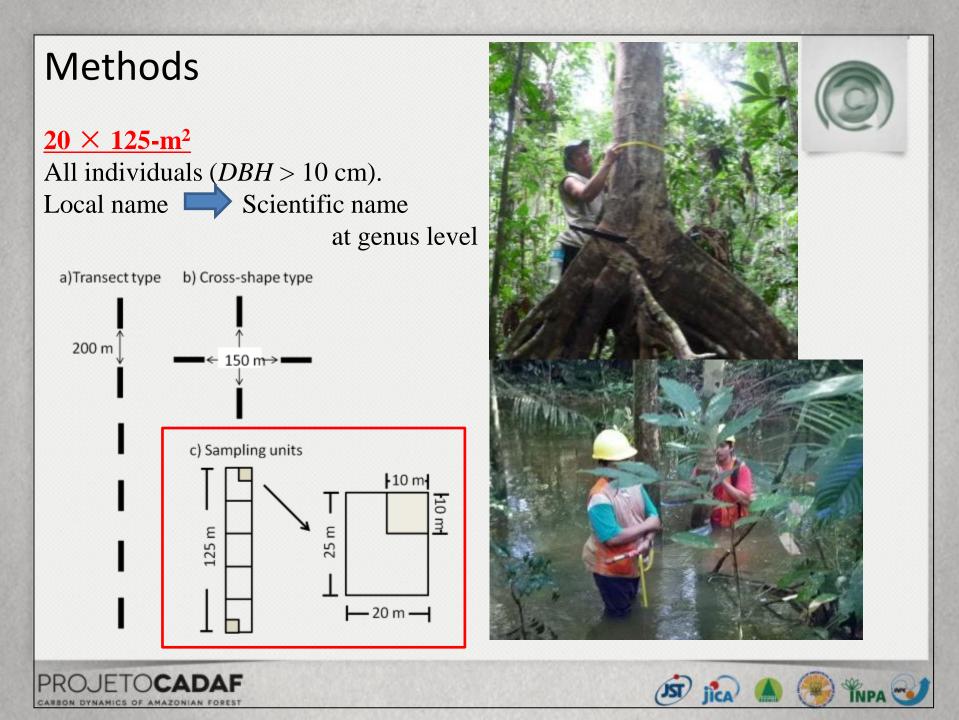
Objectives

Aims are

1) to examine a possibility to classify the forest types using an clustering analysis at genes level,

2) to examine the differences in biomass among the different forest types,


3) to examine the relationships of topography to biomass in the upper Rio Negro regions.



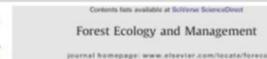
Methods

Study plots for inventory

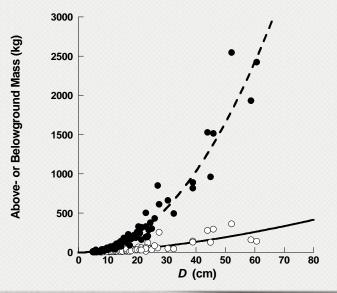
Inventory plots : n = 100 (20 m x 125 m) in 16 sites Allometry plots : n = 2 (20 m x 20 m)

Methods

Allometric models for estimating biomass



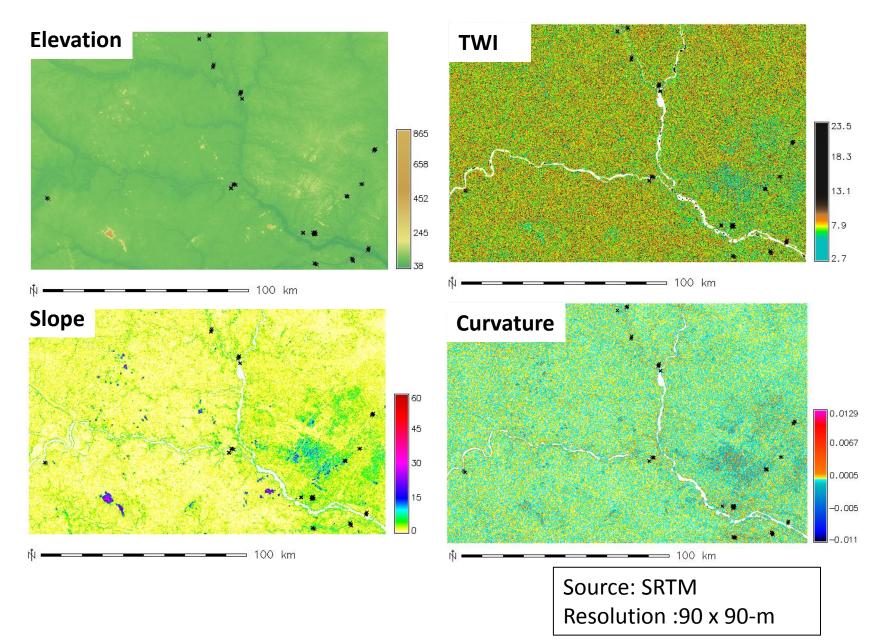
). JETOCADAE


CARBON DYNAMICS OF AMAZONIAN FOREST

(Lima et al. 2012))

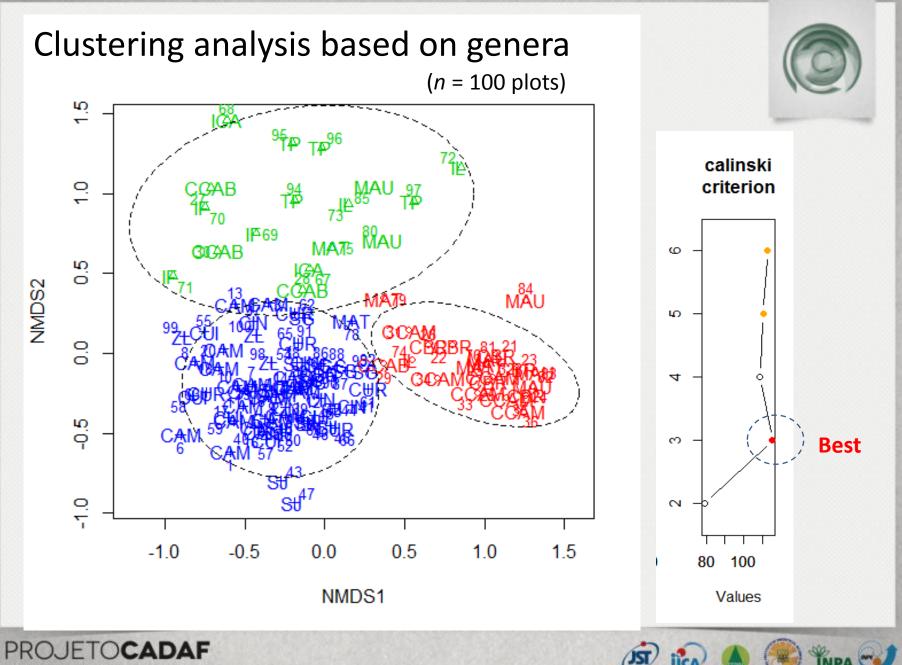
Allometric models for estimating above- and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil

Adriano José Nogueira Lima⁴, Rempei Suwa^{b,*}, Gabriel Henrique Pires de Mello Ribeiro⁴, Takuya Kajimoto^b, Joaquim dos Santos^a, Roseana Pereira da Silva^a, Cacilda Adelia Sampaio de Souza^a. Priscila Castro de Barros^a, Hideyuki Noguchi^b, Moriyoshi Ishizuka^b, Niro Higuchi^a



Methods

Topographic parameters



Results and discussion

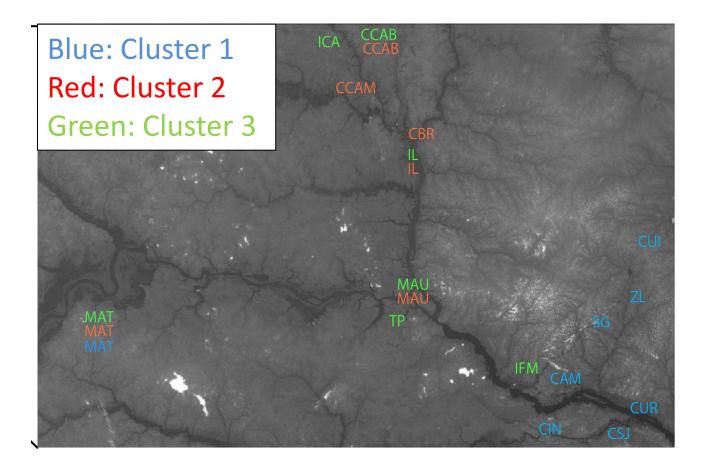
NAMICS OF AMAZONIAN FORES

Important genus for each cluster

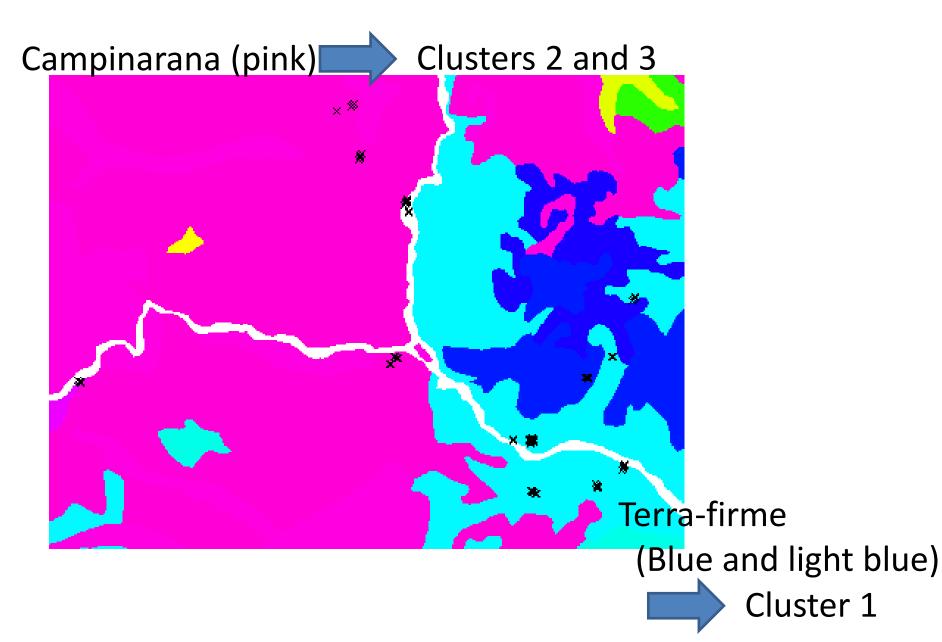
Cluster 1			Cluster 2			Cluster 3		
Genus	Indicato	r value p	Genus	Indicate	or value <i>p</i>	Genus	Indicato	r value p
Eschweilera	0.882	0.001	Pradosia	0.828	0.001	Licania	0.53	0.002
Alexa	0.875	0.001	Micrandra	0.8	0.001	Guatteria	0.515	0.001
Swartzia	0.767	0.001	Caraipa	0.566	0.001	<u>Protium</u>	0.514	0.001
Couratari	0.734	0.001	Pouteria	0.478	0.041	<u>Inga</u>	0.468	0.01
Maquira	0.636	0.001	Macrolobium	0.375	0.025	Ocotea	0.462	0.014
Coussarea	0.486	0.015	Humiria	0.375	0.003	<u>Iryanthera</u>	0.428	0.043
Virola	0.448	0.013	Eperua	0.345	0.005	Miconia	0.411	0.001
Brosimum	0.436	0.01	Ambelania	0.342	0.006	Vantanea	0.401	0.001
Scleronema	0.368	0.093	Pagamea	0.333	0.001	Goupia	0.382	0.003
Heterostemo	n 0.367	0.002	Aniba	0.299	0.603	Caryocar	0.357	0.001

According to an intensive research work on floristic composition in the upper Rio negro (Stropp 2011),

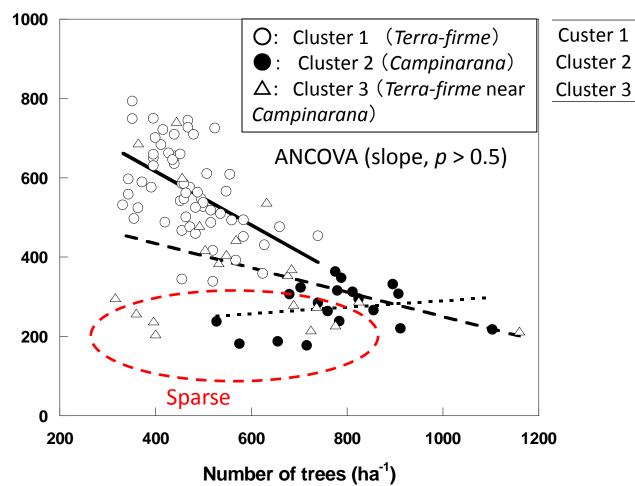
Cluster 1: *Eschweilera, Swartzia, Coutari,* virola and *Brosimum* are reportedly typical for *terra-firme* in the upper Rio Negro.


Cluster 2: Pradosia, Macrobium and Eperua are reportedly typical for campinara.

Cluster 3: *Protium, Inga* and *Iryanthera* are reportedly typical for **terra-firme** in the entire Amazon.


^{*}Licania had 5 species associated with campinarana (L. bruxifolia, L. cuprea, L. divaricata, L. hypoleuca, L. leptostacya) and 3 with terrafirme forests (L. bracteata, L. heteromorpha, L. octandra) across the Amazon (Stropp 2011).

Spatial distribution pattern of each cluster


Cluster 1 showed a geographical aggregation, and merely mixed with the other clusters. Cluster 2 and Cluster 3 often appeared together.

Comparison with the previous vegetation map (IGBE 2012)

Biomass in each cluster

Biomass (t ha-1) SE

6.0

15.9

13.3

262.9

209.6

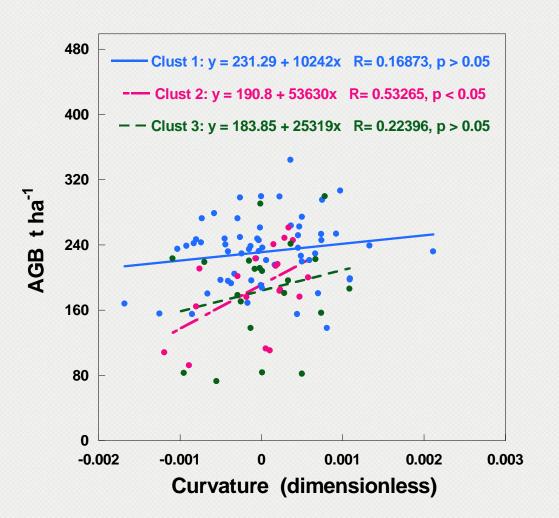
213.5

	000
weight (kg)	600
tree	400

Mean

Generalized linear mixed model GLMM using topographic parameters and forest types

The estimated biomass were grouped by each site, and the site effect was incorporated into the model as random variable.


Stepwise selection of parameters based on AIC

Best model was model 2 including Slop, Curv and forest types

										Interc		
Models	Elev se	Slope	se	Curv	se	Clust1	se	Clasut3	se	ept	se	AIC
1	0.51 <mark>0.7</mark>	-5.10	4.0	18630	8804	49.0	18.7	-6.3	19.1	178.2	67.3	1045
2		-4.49	3.8	20368	8504	51.1	17.7	-5.8	18.5	222.6	15.6	1044
3				19314	8455	45.9	17.9	-5.2	18.8	215.9	15.0	1048
4						46.8	18.4	-4.3	19.3	215.3	15.4	1071
Null mod	del									236.0	10.4	1091

1 : The terra-firme and campinarana were succesfuly separated on the basis of an floristic pattern at genus level

2: The terra-firme and campinarana showed distinct difference in the tree density – tree weight relationships, and biomass.

3 : The curvature was selected as the most important topographic factors in the GLMM, and showed positive relationship to biomass.

Obrigado por sua attenção.

Results of multiple linear model

```
summary(Im(TW4~slope+curve+clust3,data=d))
Call:
Im(formula = TW4 ~ slope + curve + clust3, data = d)
```

Residuals:

Min	1Q	Me	dian	3Q	Max
-123.795	-25.1	.99	-0.092	36.6	08 115.263

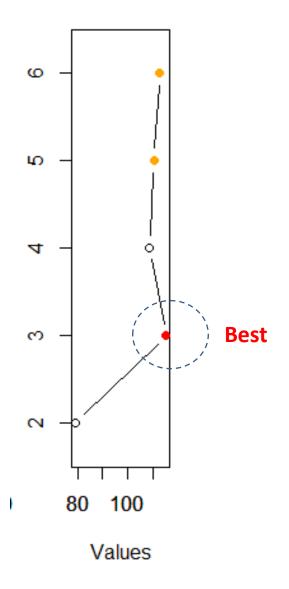
Coefficients:

	Estimate	Std. Error t value		Pr(> t)
(Intercept)	223.8	13.564	16.501	< 2e-16 ***
slope	-5.988	3.711	-1.613	0.109965
curve	21380	8660.7	2.469	0.015349 *
clust3TR	54.639	14.785	3.696	0.000367 ***
clust3UK	-5.986	17.014	-0.352	0.725738

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 53.69 on 95 degrees of freedom Multiple R-squared: 0.2427, Adjusted R-squared: 0.2108 F-statistic: 7.61 on 4 and 95 DF, p-value: 2.312e-05

calinski criterion


Methods

Clustering analysis (the <u>k-means</u> <u>clustering method</u>) was carried out on the basis of values of first and second coordinates of <u>NMDS</u> (non-metric multidimensional scaling) at genus level.

<u>Calinski criterion</u> was employed for determining the number of partitioning, where higher values of the Calinski criterion means better partitioning. This method is based on the *F*-test. The number of partitioning (*K*) was tested for a range from two to six.

Results

The optimal K was obtained as 3.

