Carbon dynamics maps for Brazilian Amazon using the ground data including CFI system and remote sensing

REDD+ MRV requires a combination of remote sensing and ground-based forest carbon inventory

Objective of the RS Study

To estimate the parameters to <u>upscale plot data</u> <u>to regional-scale</u> for evaluating <u>forest carbon</u> dynamics in central Amazon using remote sensing and GIS.

 Haruo Sawada, Yoshito Sawada, Keiji Jindo, Kanya Tokunaga (IIS/UT)

Takahiro Endo(UT/RESTEC),

- Moacir Campos, Carlos H. Celes (INPA)
- Dalton Valeriano, Yosio Shimabukuro, Egidio Arai

Upscale: Field data and RS data

Research Flow for Biomass Estimation

5

AMICS OF AMAZONIAN FOR

PROJETOCADAF CARBON DYNAMICS OF AMAZONIAN FOREST

Field Data Collection

Forest Stand Parameter

Because the average carbon stock in central Amazon forest is measured about 160tC/ha, the back scatter of L-band microwave sensor is in saturation level.

Except for the low biomass forests, the best indicator for forest biomass estimation is "canopy height". Therefore, airborne LiDAR was considered the best instrument for AGB measurement.

The analysis for existing airborne LiDAR supports the above idea.

- The LiDAR data with observation density of 20 spots/m² could create a canopy image with 50cm resolution but the data with 10 spots/m² was not sufficient to make canopy image with 50cm resolution.
- The measurement error of tree height was about 3 % for trees along a road.

PROJETOCADAF CARBON DYNAMICS OF AMAZONIAN FOREST

Profile of forest by LiDAR at ZF2

9

Plots (20m*20m) and LiDAR (0.5m Raster)

Terrain Condition and Forest Structure

Forest Stand Parameter in plot level

• the UAV system was introduced as already mentioned

Earth Observation Systems

The remote sensing technology advances very rapidly and the technologies and systems which we introduced several years ago are becoming out of data.

Data used in this study: 2000-2010

Terra & Aqua/ MODIS Landsat/ TM, ETM+ Terra/ ASTER IKONOS TerraSAR-X ALOS/ PALSAR ALOS/ PRISM ICEsat/ GLAS Airborne/ LiDAR

Forest Site Environment Map

The LMF-KF processed time series 8-day composite MODIS cloud free satellite images for nine years (2001-2009) were created as the base dataset for the carbon stock and environment mapping of entire Amazon.

From this dataset, the waterlogged forest images, day and night surface temperature images, NDVI seasonal characteristic images. etc. were developed.

Then, Amazon forest environment map was produced by combining the environment parameter maps derived from MODIS cloud free images, SRTM elevation data and other environmental data covering whole Amazon.

Vegetation indices and thermal conditions in a long period of time

15

Site environment Map

Time series data processing using GPGPU

- The processing of MODIS data of more than 500 BG (8-day composite in 2001-2009) takes a long time (more than a half year for only cloud-free image production by the state spatial model).
- Then, we introduced GPGPU(General Purpose Graphics Processing Unit).
 - GPGPU uses GPU(Graphics Processing Unit) for calculation and process several hundreds to thousands calculation at the same time for one unit.
- Time series processing by the state spatial model is suitable for parallel processing because of individuality of pixel.
 - Especially because the discrete state spatial model (DS4) uses mainly single real value and integer, it is suitable for GPGPU in high speed processing. Then we use GPGPU for the state estimation in the Hidden Malakoff Model (HMM)

- Although the original source code for the discrete state spatial model was written in dual precision real values, the logarithm function was introduced for probability calculation to get enough accuracy with single-precision values on GPGPU.
 - Special considerations were applied in mapping of the device memory of GPGPU and data transfer efficiency between host computer and GPGPU.
 - Then we succeeded 26.6 times speeding up in maximum (Sawada et al, 2012). The entire discrete state space model process succeeded 16 times speeding-up.

Creation of cloud free images

Surface Temperature

- **Cloud contamination effects are** reduced by the LMF-KL model.
- **Especially, this method works well** in cloudy seasons as February.
- > In 2005, the year of severe drought, **MODIS** brightness temperature is higher than in 2009

-20

Feb.14

processed

(day)

Temperature

original

(day)

Brightness Temperature

20

40

0

19

CS OF AMAZONIAI

2005

2009

NDVI & NDII Seasonal Profile Clusters (2009)

Temperature Seasonal Profile Clusters(2009)

Detection of waterlogged forests in Amazon

Water coverage map derived from MODIS

Waterlogged days

10days

(6)

Environmental data for whole Amazon

No	Dataset name	Data Type	Unite	Sensor/	Time	Total Number
110.	Dataset name	Data Type	Omts	Original Data	interval	of Symbols
1	Elevation (DEM)	numeric raster	m	SRTM		400
2	Plateu Ratio	numeric raster	%	SRTM		100
3	Slope Angle	numeric raster	degrees	SRTM		90
4	Bioma Type	categorical vectors				6
5	Averaged anuall rainfall	vectors	mm			28
6	Soil Type	categorical vectors				63
7	NDVI & NDII Seasonal Change Profile Clusters	nominal raster		MOD09A1	1 year	400
8	Surface Temperature Seasonal Change Profile Clusters	nominal raster		MOD11A2	1 year	400
9	Water Coverge Period Map	numeric raster	days	MOD09A1	1 year	46

- discrete-value data are assigned to continuous values (encoding)
- nominal scale and categories are also encoded

Precise rain fall data and MODIS MIR cloud-free images are under development

Integration of different types of data

CARBON DYNAMICS OF AMAZONIAN FORES

Main characteristics of clusters

Summary: Forest Stand Environment Map

- Time-series model processing was applied to NDVI, water content index, temperature, etc. of Terra/MODIS data
 - The base data set was developed for FSEM in 2001 2010
- We noticed that terrain conditions, such as plateau, incline area and baixo, strongly influence forest structure in central Amazon
 - Then we introduced the elevation data (SRTM) and calculate the ratio of plateau and incline area as one of the base data for FSEM
- Because there are only a small number of meteorological stations in Amazon (comparing to the area), not enough rainfall information is obtained.
 - Then, the rainfall data set showing seasonality and annual changes was created by introducing GSMap products of 2001 to 2009.
 - For the entire Legal Amazon, we could recognize the relations between annual water cover period derived from MODIS and annual rainfall obtained by GSMaP.
- These facts indicate that we can create the forest stand environment map every year.
 - <u>It means that the robustness of forest environment can be calculated</u> <u>according to the fluctuation of forest stand environment caused by climate</u> <u>changes</u>

Remote Sensing data for global biomass estimation

High-middle resolution RS data for up-scaling forest parameters

SALARA

657.00.001

70710707007

0.00.00

PALSAR Scan SAR 50m Mosaic High resolution TerraSAR-X Airborne Radar (P/X)

LiDAR Airborne LiDAR

UAV LiDAR Aerial Photo

Landsat and RADAR

LANDSAT

PALSAR

Saturation of PALSAR for high biomass

32

DYNAMICS OF AMAZONIAN

Development of Canopy height map by GLAS

Because the satellite LiDAR (GLAS/ICESat) data were properly archived in 2013, we introduced them for estimating canopy height, covering entire Amazon with the same quality.

We have developed the software for processing full-wave form LiDAR data to get forest structure parameters. It enabled us to extract canopy height (RH100) from the ICESat/GLAS LiDAR waveform data.

By combining the canopy height spot data (RH100) with forest environment parameters, we developed a methodology to get the canopy height image of entire Amazon.

The estimated canopy height are well correlated with canopy height data obtained on the ground (upper 20% of dominant height).

Relative forest height by ICESat/GLAS

34

AMICS OF AMAZONIAN FOREST

Schematic illustration of the GLAS instrument

Forest height estimation by ICESat/GLAS (Lefsky, 2010)

Figure 1. Global forest height map. Heights are the 90th percentile of GLAS height observations within a patch.

Fig. 1. Definition of total waveform, leading and trailing edge extents, and their relationship to forest canopy structure.

Original equation

LH = -4.5 + 0.55 * signal_extent - 0.102 * lead10 - 0.0895 * trail10 = -4.5 + 0.55 * (signal_extent - 0.185 * lead10 - 0.163 * trail10)

Too low estimation for Amazon forest !

New equation

Relative_LH = signal extent - 0.185 * lead10 - 0.163 * trail10

Comparison between dominant height and Lorey's height

Dominant height : from Fallen tree survey

Lorey's height: from Satellite LiDAR

			rees m	32								
Sites	Loreys height based on GLASS m	Dominant height based on fallen trees m	ı fallen tr	30 28		_	— y =	= 1.0261x		/	* .	
AP	29.4	30.4	o p	20								
AT	27.8	29.6	oase	26								
CG	29.8	29.4	ght k	24					•			
JT	27.3	28.3	hei		•							
SG	26.3	25.1	ant	22								
UN	20.3	22.8	min	20								
			Do	2	20	22	2	24	26	28	30	32

Loreys height based on GLASS m

Data Processing (expanding) Scheme

CARBON DYNAMICS OF AMAZONIAN FOR

HE UNIVERSITY OF TOKYO

Forest height map (RH100 and RH50)

Forest Biomass Mapping

After analyzing the relations between the biomass data obtained by the inventory and the canopy height data derived from ICESat/GLAS, the biomass map of entire Amazon was created by combining forest environment parameter data.

The biomass estimation model was developed by biomass data where more than 1 ha plot data were obtained in a plot unit or MODIS 500 meter resolution pixel, by introducing not only our field data but also existing former observation data (the standard deviation of the model error was 61.4t/ha).

By the bootstrap method, both the confidence interval of 2.5% to 97.5% and uncertainty were added to each 500m pixel. The uncertainty was $\pm 12.2\%$.

AGB(model)

 $f(RH10,...,RH100)+g(\mathbf{x})$

Biomass Map and Environment Map

Confidence evaluation of biomass estimation

The above ground biomass map

Total AGB **102.0** Gt (Uncertainty: $\pm 12.2\%$)

450~

A Carbon density map of Amazonian forest (AGB+BGB)

Comparison with Baccini's product

Biomass

Our results – Baccini's product

In Baccini's products, influences of clouds and inaccurate positioning are clearly found

Baccini et al.

Comparison with Environment factors

model18

52

Carbon Density (C t/ha)

0

240~

$g(\mathbf{x})$	
(Intercept)	5957.940
slope_HK	-5.955
avr_ndvi	-824.233
min_ndii_2_7	142.863
avr_day	14.081
min_Day	-23.478
min_Night	-8.884
GSMaP_M_avr_sum	0.075
GSMaP_M_avr_max	-0.227
min b7	1238.480

max b7

-844.761

CARBON DYNAMICS OF AMAZONIAN FOREST

Summary: Forest Biomass Map

- More than 1 million satellite LiDAR (GLAS) point data were well introduced for estimating forest canopy height of Amazon.
 - The entire canopy height map was created by combining the GLAS data and environment data with 500 meter pixel as well as ground survey data.
- Both AGB map and BGB map were developed
 - Not only the estimated mean biomass but also the uncertainty map was created by the bootstrap method.
 - The uncertainty map well indicates the well estimated area and high uncertain area in biomass estimation.

Locally adjusted biomass map, ecosystem map,,

Summary

1 Forest Stand Parameter

- Analytical techniques were studied to obtain forest stand parameters, (such as canopy height, density and biomass,) combining remote sensing information and forest inventory data
- **2 Site Environment Map**
- A methodology was developed to obtain forest site environment map using remote sensing information and various geographic information
- **<u>3 Forest Carbon Stock Map</u>**
- The Amazon carbon stock map (AGB + BGB) was created with uncertainty map by combining the inventory data with remote sensing data

Carbon map of Amazonian forest (AGB+BGB)

ADD-MODIS in Asia as DETER in Amazon

Automatic Deforestation Detection

The Port of the Po

atest Observation Date: 2012-02-21 to 2012-02-29

RS in CADAF

